
Journal of Statistical Physics, Vol. 48, Nos. 1/2, 1987 

Mayer Expansions and the Hamilton-Jacobi 
Equation 

D. C. Brydges 1 and T. Kennedy 2'3 

Received October 13, 1986," revision received March 3, 1987 

We review the derivation of Wilson's differential equation in (infinitely) many 
variables, which describes the infinitesimal change in an effective potential of a 
statistical mechanical model or quantum field theory when an infinitesimal 
"integration out" is performed. We show that this equation can be solved for 
short times by a very elementary method when the initial data are bounded and 
analytic. The resulting series solutions are generalizations of the Mayer expan- 
sion in statistical mechanics. The differential equation approach gives a 
remarkable identity for "connected parts" and precise estimates which include 
criteria for convergence of iterated Mayer expansions. Applications include the 
Yukawa gas in two dimensions past the/3 = 4~ threshold and another derivation 
of some earlier results of G6pfert and Mack. 

KEY WORDS: Multiscale Mayer expansions; renormalization group; tree 
graph identities. 

1. I N T R O D U C T I O N  

M a n y  p r o b l e m s  in s ta t i s t ica l  m e c h a n i c s  a n d  q u a n t u m  field t h e o r y  cen te r  on  

the  analys is  of  f u nc t i ona l  in tegra l s  o f  the  f o r m  

Z ( q ; )  = f dlz(q~) e x p [ -  V(q~ + qr  - [ #  �9 e x p ( -  V) ] (q r  (1.1) 
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where ~ = (q~x)~A is a Gaussian process with joint probabili ty distribution 
d# with mean zero and covariance Cxy, so that 

f dp(~) ~0~ = 0 a l l x ~ A  

f d#(~)(oxCpy=Cxy allx,  y e A  (1.2) 

and V is an approximately additive functional (local in physics ter- 
minology). This means V has the form 

V~ ~ Vx(~Ox) (1.3) 
x E A  

where the precise meaning of -~ will be discussed later. 
The object in analyzing Z is to determine information on its depen- 

dence on parameters in V in the limit as the index set A increases to an 
infinite set. In applications there is always a natural procedure available to 
define the covariance matrix and a sequence of V's for the sets through 
which A increases to an infinite set. 

An easy version of this problem occurs when V is exactly additive and 
the covariance matrix vanishes off the diagonal, because in this case Z fac- 
tors into a product of one-dimensional integrals. The expansion techniques 
of statistical mechanics quantify what happens near this case. In recent 
years the renormalization group philosophy has made it clear that the best 
results are obtained when one applies these expansions to small "sub- 
integrals" of ~ d/~ rather than the whole integral at once. For example, one 
can write the covariance C as the sum of two (or more)  covariances 
C =  C(1~+ C (2) with corresponding Gaussian processes *0 (1), d# ~1~ and ~(2), 
dp (2) so that 

Z ~-/A (1) * ]A (2) * exp( - V) = ]A (1) * exp{log[p  ~2) * exp( - V)] } 

Since the original covariance can be written as a sum of many covariances 
C~1),..., C ~u) the problem becomes a study of the map 

V ~  - l o g ( #  (i) * e v) (1.4) 

This or some variant map  has been used and studied in very many  papers; 
see, for example, Ref. 1. The present paper is concerned with the limiting 
case of this philosophy, where we write 

dte(t) (1.51 
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Each increment d~( t )  is an independent Gaussian process with an 
infinitesimal covariance C(t)dt  (i.e., an Ito integral increment). This leads 
to a differential equations approach: a flow equation describing how V 
must change to compensate for an infinitesimal change in C. Such 
equations were first obtained by Wilson, ~2~ but have not yet been much 
used in mathematical investigations. Polchinski (3) is an exception, which 
started our interest in this approach. 

The flow equation obtained in this way is a partial differential 
equation of the form 

av/a t  = �89 v , , , , -  (1.6) 

where the q~ subscript denotes a Laplacian in all the ~'s. Since there are an 
infinite number of ~ variables in the limit as A grows to an infinite set, even 
if V is local, it is an infinite sum of roughly equal functions and will 
typically be infinite. On the other hand, its derivatives with respect to the 
variables ~o x can remain finite. In this paper we study these derivatives of 
solutions that are obtained by "the method of variation of parameters." 
These are power series in a parameter in front of the nonlinear term and 
they turn out to be generalizations of the Mayer expansion in statistical 
mechanics. The study of their analogues in the discrete case was begun by 
Gallavotti et al. and is reviewed in Ref. 4. Related ideas were introduced by 
G6pfert and Mack. (12) 

The maximum principle, i.e., positivity of the fundamental solution of 
the heat equation, along with a Cauchy-Kowaleska type of existence proof 
shows that the derivatives of V may be estimated by derivatives of the 
solution of a similar equation with the Laplacian omitted and a sign 
changed, i.e., 

3 V / 3 t  = �89 V~ . V,p (1.7) 

Furthermore, we can even estimate suitable norms of the original V (which 
measure how "nonlocal" V is) in terms of the solution of (1.8) with only 
one (p variable. A Burger's equation was analyzed in Ref. 5 in a similar way 
to obtain mean-field theory bounds on the Ising model. Equation (1.7) is a 
Hamil tonqacobi  equation with an unusual sign (or alternatively the initial 
data have been flipped in sign.). The Hamilton-Jacobi equation is solved 
by the action principle of classical mechanics (see, for example, Ref. 19). 
Furthermore, in perturbation theory the same classical action is given by 
summing over all tree graphs. Thus the domination of the flow equation by 
a Hamilton-Jacobi equation provides a new viewpoint on the tree graph 
bounds used in cluster expansions. See the review article in Ref. 7 for 
discussion and references on this topic. Unfortunately, the "wrong sign" in 
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Eq. (1.7) means that we have lost relative signs between tree graphs and it 
is in these signs that the stability of the interaction is encoded. For  this 
reason we are forced to restrict ourselves to initial data with bounded 
derivatives. This is a bad restriction as far as interesting physical systems 
are concerned and it would be most desirable to get bounds involving a 
Hamilton-Jacobi equation with the standard sign. In particular, it is 
important to note that our theorems are too weak to use as a basis for a 
good global existence theorem such as is needed for the study of critical 
behavior by the renormalization group, in contrast to the methods 
discussed by several other authors. ~1) Even for systems with initial data in 
our class we do not obtain long-time existence theorems useful in the study 
of critical phenomena, because under scaling, which is part of the renor- 
malization group, bounded functions become less bounded and start to 
resemble polynomials. 

Nevertheless, this method is very simple and useful as far as it goes 
and provides accurate estimates. We show in Extension 2.5 in Section 2 and 
in Section 4 that when the initial data are chosen to be a trigonometric 
polynomial the existence theorem can be improved in a simple way so as to 
take advantage of the smoothing properties of the Laplacian in the flow 
equation and then the method is strong enough to prove convergence of 
the Mayer expansion (-= perturbation theory) for the continuum sine- 
Gordon field theory for f l<  16rc/3 and z small. The sine-Gordon field 
theory is the same as the two-dimensional Yukawa gas and 161r/3 is 
beyond the first threshold at fi = 4re at which the gas collapses into dipoles. 
These are mostly not new results, but we think there is a conceptual 
advance in our derivation. We have also found a very useful graphical iden- 
tity (Theorem 3.1), which is representative of the principle that graphical 
expansions are dominated by their tree graphs. As an application of this 
result we apply the identity to the (Villain) Yukawa system in three dimen- 
sions, first analyzed by G6pfert and Mack. ~12) 

Each of the following sections refers to results in earlier sections, but 
nevertheless can be read almost independently. 

2. FLOW E Q U A T I O N S  A N D  A S H O R T - T I M E  EXISTENCE 
T H E O R E M  

In this section we study the approximate additivity properties of 
V(t, 9) defined by 

V : =  - l o g [ # r  * e x p ( -  V~~ (2.1) 

where d/~ is the mean zero Gaussian joint probability distribution with 
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covariance C(t)= Cxy(t) where t e R + is a real number that parametrizes a 
differentiable deformation of the covariance. Thus, we assume 

C(O) = 0 (2.2a) 

C is differentiable (2.2b) 

C=- dC/dt >>, 0 (2.2c) 

and interpret dpo to be the measure 8(~). This is consistent with continuity 
because the weak limit of d#, as t tends to zero is 8(~). Condition (2.2c) 
means positivity in the sense of forms. V (~ is a smooth, bounded function 
of ~. We will also use #{,.~] to denote the Gaussian measure with 
covariance ~. C(~) d~, so, for example, #, is the same as #u.0j- 

k e m m a  2.1. Vis the unique bounded solution to 

8V 1 ( 82 E 0V 8V~ 

lira V(t)= V ~~ (2.3) 
t~0 

Proof. #, has a Gaussian density which is the fundamental solution 
for a heat equation, so that Z =- #, �9 Z (~ is the unique bounded solution to 

8Z 1 82Z 
at - 2 ~' Cur - - ;  lim Z(t, ~o) = Z (~ (2.4) 

..... , - 8~o xoq~y ,~o 

The proof is now an elementary calculation using V= - log (# ,  �9 Z (~ with 
Z (~ e x p ( -  V(~ | 

To state our existence theorem we define 

8MV 
V~, ....... M - & o x . .  .8(pxm (2.5) 

1 
VM(t )=- sup ~ ~. 1Vx,:, 2 ....... M(t,~)t (2.6) 

real, x x 2 , . . . , x  M 

F(~(t)l -= sup ~ ICxy(t)l 
x y 

VM is defined for M = 1 by omitting the sum in (2.6). 

T h e o r e m  2.2. Suppose that the power series in one variable q) 

v(O)(~p)=_ s VM(O ) (pM (2.7) 
M=I 
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has a nonzero radius of convergence; then 

Ov 1 (Sv) 2, v(0, ~o) = v(~ (2.8) 0-/=2 lr \~o] 

defines for t small a function v(t, q)) that is analytic near ~0 = 0. For all t for 
which v exists the flow equation (2.3) has a unique solution which is 
analytic in the initial data and bounded according to 

VM(t) ~ VM(t), M = 1, 2,... (2.9) 

where VM(t) is the Mth coefficient of the power series for v: 

v(t, ~o)= ~ VM(t) q~M (2.10) 
M ~ O  

In particular these bounds hold if t is sufficiently small that 

[f~ ,C(s)l ds] sup [MVM(O)]2/M <I-- (2.11) 
M ) I  4 

Proof. The flow equation is 

1 ( 2v av 
- 2 ~ C v . ( t )  - - - -  , x~A (2.12) 

0t 

Since we are only considering bounded solutions of these equations, we can 
rewrite them as integral equations 

v z  

We differentiate this with respect to q~,,,..., (PxM and obtain 

V~O)_ ~1 s~ ~ z f~ ds Z Cyz(s) #e,,sl * (VyjV~j\j), (2.13) 
y , z  

where I _  = {1,..., M} and we have used the set subscripts /, J, and /~J to 
denote derivatives with respect to Cs at x~ for i ~ J, etc. We can insert these 
equations into themselves and thereby generate a series for any given 
derivative with coefficients involving only derivatives of the initial con- 
ditions. This becomes a power series in z if we replace V (~ by zV (~ We 
also find by taking absolute values and supremums over ~ that 

VM(t) <~ VM(O) +~p~=o j ~ ds Ir ( p +  1) Vp. ,(s) 

• ( M - p +  1) VM_p+I(S ) 
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for M~> 1. The /s disappear on taking supremums because they are 
probability measures. The iteration of 

VM(t)=vM(O)+-2p ~=o ds IC(s)l ( p +  1)Vp+l(S) 

x ( m - p +  l) VM_p+I(S) (2.14) 

where M>~0, produces a series that majorizes the formal series for VM 
(with M~> 1) obtained by iterating (2.13). Furthermore, if we define v(t, ~o) 
by 

M 

then (2.14) becomes 

v(t,~o)=v(o,~o)+ 5 as Id(s)l \- ~ ] (2.15) 

which is the integral equation corresponding to 

8v 1 ( O v )  z, v ( t = 0 ) =  ~, VM(O)~o M (2.16) 

We will now prove that the iteration of (2.14) converges, by replacing v(0) 
by zv(O) in (2.15) and showing that this equation has a solution analytic in 
z in a neighborhood of {z: Izl ~< 1} and in ~0 near ~o = 0  for t satisfying 
(2.11). It is enough to replace the initial condition on v by the majorizing 
series 

v(O, ~ p ) = z ~  1 M M M ~ K  qo = - z l o g ( 1 - K ~ 0 )  

where K = supM~>I [MVM(O)] 1/M. By changes of variable 

~= K2 fs Id(s)l ds, (p= K(p 

the equations are transformed to 

8v 1{8v~ 2 
Or - 2 \ 8 - ~  ] ' v(z = 0) = - z  l o g ( 1  - 4o) 

This equation may be solved by the action principle (see, for example, 
Ref. 19). Its solution is 

v = - z  log(1 - r  (r  _ r 
z ' [  
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where Ip0 is such that the right-hand side is critical, i.e., 

z 1 
- - + -  ( ~ - ~ o ) - - 0  
1 - ~ o  "c 

v is analytic near q~ = 0  for 0~< ]zz] < 1/4, which by our change of variable 
above is the same as (2.11) since ]zl~<l. We conclude from these 
arguments that the series generated by iterating (2.13) and its derivatives is 
convergent for small time in the V M norms defined above. This implies that 
the series are uniformly convergent series of analytic functions, so that the 
series for V solves the flow equations (2.12). | 

Some Extensions 

E x t e n s i o n  2.3. If the set A has a metric p (example: Euclidean 
distance on A_= Zd), then we can discuss exponential localization, i.e., 
exponential decay of correlation functions, by defining 

p(xl  ..... XN) = inf ~ p(x l, Xm) (2.17) 
T e t r e e  g r a p h s  o n  { 1,..., N }  l, r n e  T 

which is a measure of how spread out the index points x 1,..., XN are. Next 
we fix 2 ~> 0 and define 

1 
VMj.(t)= sup ~ ~ ]Vx, x2 ....... M(t, q0)] exp[2p(x, x2,..., xM)] 

rea l  . . . . .  2 ....... M (2.6') 

10(t)l;. - sup ~ Id'x.v(t)l exp[,~p(x, y ) ]  
x y 

With the same proof as in Theorem 2.2 we obtain the following result. 

T h e o r e m  2.2' .  The same as Theorem 2.2 with VM and Idol replaced 
by VM.~. and I d~l>., respectively. 

E x t e n s i o n  2.4. If the index set A is a subset of the lattice 
( e Z ) J c  R J, then by replacing V/~ by eJV ~~ all we have done carries over 
with sums over indices x e A replaced by Riemann sums. This means there 
will be a continuum version o f  these results in which derivatives with respect 
to q~x are replaced by variational derivatives O/~q)(x), q~ becomes a 
Gaussian field over R d, etc. In particular, the flow equations can be refor- 
mulated as integral equations. 

E x t e n s i o n  2.5. Theorem 2.2 does not take advantage of the 
smoothing properties of convolution by #. As we will explain below, 
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trigonometric polynomials are a standard choice for the initial data. In this 
special case it is easy to do better: fix T>~ 0 and consider, for example, the 
initial data 

V(~ z ~. :exp(iq)x): r 
x 

where : :r (normal ordering with respect to the covariance at t = T) is 
defined by 

:exp(icPx): 7- = exp [�89 ] exp(icpx ) 

We assume that d'~x is independent of x and set c(s ) -  Cxx(s). 

Proposition 2.6. For  T sufficiently small that 

The equation 

"]0 Id~(s)lexp .,. c ( r ) &  d s < e  I 

5 ] 0 t - ~ e x p  c(r)& Id(l)l ~ j  

~(t = 0 ) = z e  ~ 

has a solution at least up to time T and for M ~> 1, 

VM(T)<~ VM(T) 

If Theorem 2.2 were applied, we would achieve essentially the same 
result but without the normal ordering and with c(s) set to zero. This 
proposition is a precise version of the Mayer expansion. We will elaborate on 
this in the last section. 

Proof. The action of convolution by/~ on the initial data is 

/~, * Vf~ z ~ exp - -2 o Cxx(s) ds :exp(i~ox): r 

so Eq. (2.15) in the proof of Theorem 2.2 can be replaced by 

1 , ds 1 v ( t ) = e x p [ - ~ f o C ( S )  v(O) 

+-~ ds Id'(s)l (s) 
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Provided t ~< T, we can replace this with the majorant 

v( t )=exp - ~ c(s)ds v(O)+ ds Id(s)l k(s) 

xexp 1 ' [~__~ v(s) 1 

where 

k(s)=exp[~ ff c(z) dr] 

This integral equation corresponds to 

avat 21 c(t) v+  k(t) ld(t)lk&p) ' M : I  

We make the change of variables 

v(t)=exp I~ ff c(s) ds] v(t) 

to eliminate the linear term in this equation and proceed as we did with 
(2.16) in the proof of Theorem 2.2, to conclude that for M~> 1 

VM(t)<~ exp I~ ff C(s)dS] VM(t) 

where ~(t) solves, for t~< T, 

a t - z e X p  c(s)ds 16'(t)[ (av ' ]  2 \&o) 

~5(t = 0) = exp - c(s) ds ~ VM(O) (pM 
M = I  

(~0 M 

and by the action principle this equation has a unique solution at least for t 
such that 

t(~(s)l exp c(~)dr dslzl<e -1 

Collecting these equations completes the proof. II 
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Constants�9 With initial data like exp(i)~q~) whose Nth derivative is 
bounded by const N as opposed to N!, we can replace the 1/4 by 1/e because 
the initial data can be majorized by the series for e ~ instead of 

_ 1 2 v (0)=e  ~~ have a solution - z  log(1 - ~0) and then the equations v, - 7v~, 
that exists for t < 1/e. 

3. EXPLICIT  F O R M U L A S  A N D  T H E  M A Y E R  E X P A N S I O N  

In this section we will obtain explicit formulas for the expansion that 
results from iterating the integral equation form of the flow equations of 
the last section. In the case of trigonometric initial data this expansion is 
the Mayer expansion and we concentrate on this aspect first. 

For the special case discussed in extension 2.5, where the initial data 
V t~ are given by 

V(~ ~ :exp(iq)~): 
, c ~ A  

there is the following well-known and easily proved identity, the sine- 
Gordon transformation (see, e.g., Ref. 10, Section 2), which connects the 
Gaussian integrals we have just been discussing to statistical mechanics�9 
Let # be a Gaussian measure with covariance u; then 

# �9 e x p ( - z V  (~ 

= N ~ .  ~ ~ exp - - 5  2 u(x~,xs) exp i ~0xj 
�9 x I , . . . ,XN i , j ; i  va j 

The right-hand side is the partition function for a grand canonical ensem- 
ble of N particles in states x~,..., XN with activities z exp(i~0) and two-body 
interactions u(x, y). The right-hand side of this equation can be defined in 
a wider context than the left, so we make the following generalizations. 

Let (A, dp(x)) be an arbitrary finite measure space (the possible states 
of a single particle). Given (jointly) measurable real-valued functions 
u(x, y) and ~o(x), we set 

1 

u -  w(xl,..., xN) -  5 u(x,, xj) 
i v ' j  

1 f dUp exp(-- U)exp [ i  ~ q~(xj)] 

lul = sup I dp(y) lu(x, y)] 
x 

(3.1) 
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We assume that the interaction u is a family u = u(t) which is stable in the 
following sense: there exists fi(r, x, y) and c(r) such that for all N, 

X 1 ~...~ X N ~  

i' u(t, x, y) = il(r, x, y) & 
- -oo 

(3.2) 
1 

U(*C, X l . . . . .  XN) =1 ~, it(Z, Xi, X i) >~ ---~ C(Z) U 
2 is~ 

It is a standard procedure, discussed, for example, in Ref. 7, to define the 
Ursell coefficients (exp[ - U] )c by 

( e x p [ -  U(x, ..... XN)]), =-- Z 1~ {exp[ -- u(x,, X,)] -- 1 } 
G g e G  

=1 if N = I  

where G is summed over all connected graphs on N labeled vertices 
{1 ..... N} with bonds denoted by tj, where i< j ,  i, j e G .  Then one proves 
(Ref. 7, Appendix A), that in the sense of formal power series 

'; [ ] log Z ( ~ o ) = ~ .  dNp (exp[--  U(Xl ..... xN)]) ,  exp i ~  ~o(xj) 

This (Fourier) expansion is called the Mayer expansion. 

Notation. Let x~ ..... xN be given. Given a subset I c  {1 ..... N}, we set 

u(I) =_ g((x,),~,) 

u , j -  u(x,, XJ) 

6 - pair (i, j )  with i < j 

Our first result does not require the stability bound in (3.2), since it is 
an identity which holds pointwise in xl,..., XN. 

T h e o r e m  3.1. The Ursell coefficients are equal to 

(exp[ - U(xl ,..., XN)] ),. 

1 d s  1~lkl(S ) - - I -1 t  y f' - z  
T b ~ T ~7~ 

where T is summed over all connected tree graphs on the labeled vertices 
{ 1 ..... N} and b runs over all bonds in T. The s(k, l) is defined by 

s(k, I) =- sup{sb: b ~ unique path in T joining k and l} 
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This identity is a better version of the tree graph identities found by 
Battle and Federbush (8) (see also Ref. 7, Theorem 3.1, and review in Ref. 7). 
An important feature of this identity is that if U is stable as in (3.2), then 

1 
fi~/(s) >~ - ~  c(s) U 

k l :  s ( k , l )  <~ s 

In particular, this means that the exponent in Theorem 3.1 is bounded 
below, so that 

F(exp[ - U(Xl,..., xN)])cl 

<~ ~r b~r'[I ~ dsb Itib(Sb)l exp J_o~ dr c ( r )N  (3.3) 

We postpone the proof of Theorem 3.1. 

An Appl icat ion  o f  T h e o r e m  3.1 

The Villain Yukowo Gas. This model is related by Poisson sum- 
mation to the massive Z ferromagnet. The analysis of this model was an 
essential step in the papers by G6pfert and Mack (~2) on permanent con- 
finement in Abelian U(1 ) lattice gauge theory. The partition function of the 
model is 

Z~( ~o ) = ~ exp[ ifll/2(m, q~)] exp[ - f l (m,  vm )/2 ] 
m 

where m is summed over all assignments x -+ m(x) e Z of integers to sites in 
a finite subset /2 of a simple cubic lattice Z v in v dimensions and 
v=(--zI+M2) -I. We are using the notation (m,~o)==_Zxm(x)(o(x). 
Define A - / 2 •  and let dp be counting measure on A. A typical 
point in A will be denoted (x, m) or ~. It should be thought of as a charge 
m at site x. 

P rop os i t i on  3.2 (G6pfert and Mack). For /~ sufficiently large, 
depending on dimension v and the mass M, 

log Za(q~) = 2 1  f dN p (exp[--U(~t,..., ~N)])c 

x exp [ifii/= E m, q~(x,)] 

is convergent uniformly in Q after dividing by the volume of f2 and 

fvt dNp I(exp[- - U(r CN)])cl 
fixed 

~< ( l + f l M  2)-IC(fl ,  M ) X ( N _ 2 ) !  
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where 

( 1 2 )  C(ti, M ) = ( l  +t iM -z ) ~ mexp - ~ t i e m  +m 
m>~ l 

8 ---- ( m  2 + 4v)-  1 

G6pfert and Mack also give results on the exponential decay of the 
connected parts, which can easily be extracted from this approach also. 

Proof. The essential point is that the self-energy of a charge forces 
the activity down. To exploit this it is important to use the hard core 
interaction that will shortly be introduced to prevent equal and opposite 
charges from sitting on top of each other. 

Following G6pfert and Mack, we note that this is also the grand 
canonical partition function of a hard core Yukawa gas of particles on s 
with infinitely many species labeled by charges m = + 1, _+ 2, etc., so that 
the possible states are labeled by ~ -  (x, m)~ A -  f2 x (Z\{0})  and 

1 N 

Z~ = NE-~" f d'VP H exp[itil/2m,r e x p ( -  u) 
i = 1  

with dp a counting measure on A and 

1 
u(~, ..... iN)=~Y~u(L,~j)  

t.] 

where 

u( ~i, 3/) = timim/v(x,, XJ) + Vhc(Xi, Xj) 

Uhc(Xi ,  X] ) ~- (30 if xi= X~ 

= 0 otherwise. 

Note that, in contrast to (3.1), self-energies are included in U. 
Since this is a lattice system, v - l =  --d + m z is a bounded operator. 

We set e - l =  IIv l jl = M Z q  - 4V. This implies that as a form v >~ e, so that 
U~> leti(a, cr), where (r(x) = Zi  mi 6 ( x -  xi). Furthermore, because of the 
hard core, (a, a)~> Z m~, so we have the stability estimate 

1 
U >~-~ efl ~ mZi 

This lower bound by a positive quantity will drive the activity down. 
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We define for t �9 [ - 1, 1 ] 

i l ( t , r  for l ~ > t > 0  

=flmimjv(Xi, Xj) for 0 ~ > t ~ > - - i  

where f ( t )  is any m o n o t o n e  function with f ( 1 )  = oo and f ( 0 )  = 0, so that  
u = ~ it dt. By Theo rem 3.1, 

I ( e x p [ -  U(~1 ,..., ~u)]),.I 

~T fl I 1 k~./ fsl( d x ~ l k ' ( S ) l  <<- [I  [dsb fib(Sb)] exp -- 2 kl) 
--1 b e T  , "' 

where the sum over  k, l now includes k = l terms and s(k, l) = - 1 if k = l. 
For  fixed (sh) let n be the set of  bonds  kl (k r l) for which s(k, l) <~ 0 

and let p be the set of bonds  for which s (k , / )>0 .  Let T+ = T A p ,  
T = T n  n. Rewrite the exponent  using 

f l y~ ds ~k,(s) 
k,l (k,I) 

f s 1 = Y~ ds ;~kl(S) 
k,l c p �9 (k,l) 

+ ~ ds ~,.(s) + Y~ ds C,~,(s) 
k,l~ n (k,l) k , l~n  

The last term integrates up to a hard  core between all pairs k, l with k l � 9  n. 
The second term equals ;;; ;o 

ds ~,~,(s) = ds y~ ~k,(s) z(s/> s(k,/)) 
(k J) l k,I 

where Z is the indicator  function. It  follows f rom the definition of s(k, l) 
that  for each s there exists a par t i t ion of {1 ..... N} into disjoint subsets 
Z1 ..... Xr such that  

(a) k, l belong to the same X i f f s ( k ,  l)<~s. 

(b) Zi~*,(s) z(s>>'s(k, l))= ~ ~ fi,z(s). 
k,l /=1 k,l e Xi 

Proper ty  (a) implies that  if i, j �9 the same X, then s(i, j) <~ s <~ O, so therefore 
/j ~ n and the last term forces a hard  core between i and j. Therefore,  by the 
stability estimate,  the second term is bounded  below by e/~ Y'. m 2. The first 
term is the sum of positive terms, so we can bound  it below by d ropp ing  all 
terms except those with k, l � 9  T+.  

822/48/1-2-3 
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The last paragraph shows that 

I (exp[ - U(~ ..... ~u)])cI 

- -  b ~  T b ~  T +  

{Ub(Sb) exp I -- fs~h ~ib(s) ds]} 

H 
b e T  

We hold T, T+, T_ fixed and do the dsb integrals, noting that if b = 0" and 
we set xb = x~- x/, then 

dsh ilh(Sh) exp -- = c~(xb) 

Therefore 

I(expl-- f(r ,..., ~N)]), I 

-<2 
T 

Let d( i, T)= # 

Z H 6(xh) [I mim/fiv(x,/)exp - ~ e Z m ~  
T+ = T h~ T+ [ j e T _  

of lines in T that meet vertex i. Then 

1~ miml<<- ~I imil a(i'r' 

and this combines with the last inequality to give us 

q(exp [ -  U(~I ..... ~N)]), I 

~ [6(xb)+flv(xo)][l]mi[Uli'V)exp(--~em~] <~ 
T b e t  i 

\ z. / 

We sum both sides of this inequality over x2 ..... XN, using 

E 1-[ Eb(x~)+fiv(x~/)]<~(l+flM 2)N-I 
X2,... ,X N b @ T 

We estimate the sum over trees T using Cayley's theorem, which says that 
the number of trees on N vertices with d(i, T)=d(i) is 
(N-2)!/I~(d(i)-1)!.  The result is 

f dNp [(exp[--U(~,. . . ,  ~N)])cl 
Xl f i x e d  

~< ( l + f i M  2)N- l (N--2) !  Iml~ exp -- em 2 
m,u>~ 1 ( d - -  1 )! 

=- ( 1 4 - t i M  2 ) - I c ( f l ,  M ) N ( N - - 2 ) !  | 



Mayer Expansions and the Hamilton-Jacobi Equation 35 

Theorem 3.1 is proved using the following lemma, which involves the 
flow equations of Section 2 written in terms of the Fourier coefficients of V. 

k e m m a  3.3. Fix X~,...,XN. The system of ordinary differential 
equations for the functions f ( I ) - f ( t ,  I), 

1 
d f ( I )  = - ~ t~o.f(I ) - ~ ~, ~,, s f (12J )  

i , j ~ l , i < j  J ~ l  iEJ ,  j ~ [ \ J  

where I c  { l ..... N}, together with the initial conditions 

lira f ( t , I ) = l  if l i [=1  
t ~  oo 

= 0 otherwise 

has a unique solution, which is 

f ( t, I)= ( e - ~/("')), 

The sum over J ~  I extends over proper subsets of L 

Proof. We begin by showing that the Ursell function is a solution. 
For II[= 1 the differential equation is d f /d t=  O, which is satisfied by the 
N =  1 Ursell functions. For N >  1 we use the definition to compute that 

d 
(e-U{/'),.= - Z  E ~b e-~b Fi (e ~o- 1) 

G b ~ G  a ~ G  
a~-b  

FI (e . . . .  
b G a ~ G  

b [~G:b~G a ~ G  G : b ~ G  a ~ G  A 
a # b  

The first term is -Y2b ~b(e v(~l)c, which is the first term in the right-hand 
side of the differential equation. To each graph G in the first sum inside the 
square brackets we may associate a graph G' in the second sum by 
G ' - G  w {b}. The corresponding terms cancel. The remaining terms in the 
second sum are labeled by graphs G such that b e G and G becomes discon- 
nected when b is removed. Let G1 and G2 be the two connected com- 
ponents of G with b removed. Let J be the subset of vertices in I that are 
connected by GI. Then we can write all the surviving terms in the square 
brackets as 

E E E FI (e 
kl J : k ~ J , l ~ I X J  G l O n J  G2 o n / X J  a ~ G i u G 2  
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Using the definition of Ursell functions, we find that this equals 

k l  J: k E J,  l ~ I ~ J  

which is the second term on the right-hand side in the differential equation. 
Thus, we have proved that the Ursell functions satisfy the differential 
equation. 

To see that the differential equation has a unique solution, suppose 
that g(I)  is another solution with the same initial conditions. If III= 1, then 
certainly g ( I ) = f ( I ) =  1 for all t. Since the nonlinear term on the right-hand 
side of the equation involves g(J)  with IJq <[II ,  we find 

d 
dt I f ( I ) -  g(I)]  = - ~ f i ~ [ f ( I ) -  g(I)]  

(]: i , j  ~ 1 

and so f =  g for all t. I 

Proo f  o f  Theorem 3.1. For I =  { 1 ..... N} let 

f ( I )  - ( - 1 )ill-~ ~ I~ dsb i~h(Sh) exp -- ds ilk,(S ) 
r h E T ' r.w ( k , l )  

- 1  if 1II=1 

where T is summed over all connected tree graphs whose vertices are the 
elements of L By Lemma 3.2 it suffices to prove that fsatisfies the system of 
differential equations and the initial condition in the lemma. The initial 
conditions are satisfied trivially. 

When we differentiate f with respect to t the derivative can either act 
on one of the dsb integrals or on the exponential function. The result of the 
latter is - ~  fiijf(I), which is the first term in the differential equation. The 
contribution from the derivative acting on the dsb integrals is 

(-11'1' Z 17[ 
T b ' ~ T  b E T  - o ~  

b # - b "  

x [ I  hb(Sb)exp -- dz fi~(z 
b e  T ( i , j )  
b ~ b '  

where sb, = t. If we remove b' from T, then the set I splits into two subsets J 
a n d / k  J, which label the variables connected by the two connected subtrees 
into which T~{b'} splits. If i ~ J  and j ~ / k J ,  then the path from i t o j  in T 
must contain b'. This implies that t(i, j )  = t and so ~',(i, Jl ds fi~/= 0. Thus the 
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also integrals factor into integrals associated with J and L,J. At the same 
time we can factor the sum over T into a sum over T~ and T2, all tree 
graphs on J and /~J, respectively. The sum over T1 is f ( J )  and the sum 
over T 2 is f ( l~J) ,  so we obtain 

1 
2 ~ J ,~s~ it~f(J) f ( l~J)  

j e l ~ J  

This is the other term in the differential equation, so we have shown that f 
satisfies the differential equation and the proof  is complete. | 

Now we consider the analogous result in the context of perturbations 
of Gaussian measures. In particular we establish a relationship between the 
flow equation and the Hamil ton-Jacobi  equation (with the "right" sign) 
term by term in an infinite series. Given a tree graph T on vertices labelled 
1 ..... n and nonnegative numbers (Sb)b~r, we construct from 9 a new 
Gaussian process 9--(9~)--(~,0x,~)~A,~=~ ...... with joint Gaussian dis- 
tribution #r,.,. defined by the covariance 

Cx.i..v.j - Cx , ( s )  ds 
( i , j )  

Let A ~ ..... A,, be given functions of 9; then we define a new function of 9, 
(A~ ..... A,),., which is multilinear in the A's, by 

(As ..... A , , ) , = ~  r f I  dsb IXn,* [Ab(Sb)] Ai 
b e T  i = l  

where on the right-hand side A i - A i ( g i  ) and ktr, , �9 is convolution by the 
measure defined above in the following sense: 

(/z n, * F)(9) = f dlZr, s F(9 + 91 ,..., 9 + 9,)  

and if the bond b e T is 0", then 

x,  y 

T h e o r e m  3.4. If V =  V(t, 9) solves 

1 ( 2 v _  
3t - 2 Z Cxy(t) \ ~ 0  x ~3~py &Px 
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with given initial data, then, as a formal power series, 

1 v(t)= -F~(v(t=o) . . . . .  v(t=o))< 

The series is convergent for initial data and t as in Theorem 3.1. 

If the convolution by # were omitted in the definition of 
(V(0),..., V(0))<., then the series would solve the Hamil ton-Jacobi  equation 
instead, i.e., the flow equation without the second-order derivatives in 4o. 
This will be clear from the proof and it is a way of seeing that the solution 
to the Hamil ton-Jacobi  equation (which is also the classical action) is the 
sum of all tree graphs. 

Proof. Let f,, denote the nth coefficient of the series, i.e., 

where A i =  - V ( t  = 0, qr We substitute the series into the equation and 
equate powers of V to find that the differential equation is satisfied if 

L m :  ] + m ~ i t  

~, has two terms, depending on whether the time derivative acts on the t in 
the Pr..,. or the t in the limits of the ds integrals. The first term is simplified 
using 

d 1 . 
dt ktr,, * F = ~  Affr, s * F 

and is the first term on the left-hand side of the differential equation. When 
the t derivative acts on the limit of a particular dso integral we lose the 
integral and set sb = t. If  we remove the bond b from the tree graph T, then 
the set of vertices { 1,..., n} splits into two sets J and J< each of which is 
connected by the (two) subtrees into which T dissociates. If i belongs to J 
and j belongs to jc, then the path in T from i to j must contain b, so that 
s(i, j ) =  t. This remark and the definition of the covariance of #r,~ imply 
that the random variables q~u/with i in J are independent of the variables 
with i in Jq If the bond b and the subset J are held fixed, then the sum over 
trees T factors into two independent sums over trees on J and jc. Since #r,s 
also factors, we can write the sum over all terms with b = 0" fixed as 

l! ml 
n! 2 dx,~ g(i, x, J) g(j, y, jc) 

J:  i E J , . j E J  c x , y  
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where l =  I J[ and m = [J"t and 

g(i, x, J) =~. S ds~ 1~r, s �9 ~ [Aa(sa)] 1FI Ak 
T o n J  k ~ J  

We now sum over the bond U, interchange the sums over y and J, and use 

g(i, x, J )=o-~ f z  
i ~ J  

l! m! 

n! - !  
J :  I J I  - t 

The result is the second term in the differential equation. | 

4. THE Y U K A W A  GAS 

It has been shown/6'1~ 17) that the two-dimensional Yukawa gas 
has an infinite series of thresholds in the interval /~e [4zr, 8z~], starting 
at /}--4~, at each of which, successive terms in the Mayer expansion, 
beginning with the term of order z 2, become infinite. However, the corre- 
sponding sine-Gordon quantum field theory remains stable provided an 
extra vacuum energy counterterm is included. They have interpreted these 
thresholds in terms of a sequence of collapses of the system into dipoles, 
quadrupoles, etc., and Benfatto et aL have started a program to study the 
convergence properties of the Mayer expansion for the Yukawa gas in the 
region 4z </? < 8~. In this section we will show by an extension of our 
previous arguments that the Mayer expansion is convergent for /} in the 
range 4~z ~</~ < 16~/3 provided the O(z 2) term is omitted and we will make 
some remarks on how to extend the argument up to /~ < 6~, which is the 
first threshold after 4~. Benfatto etal. (16) have obtained similar results 
independently. First it is helpful to see how we can obtain their result on 
the convergence of the Mayer expansion for/~ < 4m We begin by proving a 
general theorem of independent interest, which appeared in Ref. 9 in a 
slightly weaker form. 

We assume we have a system that is stable in the sense of (3.2) and we 
define R== {r~R:  t>~>>.s and t~ is a purely repulsive interaction} and 
then set 

~(s) = ~(s) exp ( - fR= fi ) 

We also note that if z e R=, then c(z)= O. 



40 Brydges and Kennedy 

Theorem 4.1. 

Then 

Let 
I 

ds 

t"  

sup | d N- lp [ ( e x p [ -  U(t, x, x 1,..., xN 1)'] )c[ N N-  2ON-  1 
x 

If Q < e 1, then the Mayer expansion converges. 

The appearance of fi as opposed to fi in the norm is quite valuable, 
since the theorem can be applied to systems with hard cores, unlike the 
theorem in Ref. 9. Apart from this, this result was in essence already 
obtained in Section 2 (Extension 2.5), except that we did not formulate a 
continuum version and we imposed the slightly stronger condition that 
~i-_-C be positive definite as opposed to stable. (The imposition of initial 
data at t =  - o o  instead of t = 0  is a trivial change.) Theorem 3.2 is also 
easily derived from Theorem 4.1. 

Proof of Theorem 4.1. We return to the flow equation of Lemma 3.3 
and write it as an integral equation: 

1 I, f (I ,  t) = - ~  -oo ds ~ ~ ~(s)  f(J,  s) f(l~J,s) exp - Uk/ 
J c l  i C J  

j G J  

provided Ill > 1; if [I[ = 1, then f(I ,  t ) =  1; if I = ~ ,  then f (I ,  t ) = 0 .  To 
prove this, it suffices to check that it satisfies the differential flow equation. 

We introduce the norms 

Fn(s)-  sup dx2.., dx, If(I, s)l 
Xl 

(with the integral and sum omitted if n =  1) and make the inductive 
assumption: for 2 ~< k < n, 

We substitute this into the integrated flow equation and apply the stability 
estimates, ~2kt fikt(z) >/ -�89 n if z not in Rs, ~> fi~ for any 0 if r is in Rs, to 
obtain 
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fn(t)~lft2 --c~ d s ~ ( F l )  l (Kl--k)n-k-1 II~I(S)I 

x ds' [~(s')] exp , c(z) d'c 
oo 

We now combine the exponents after increasing the second one by 
changing its coefficient from n/2 to n -  1 and use the following com- 
binatoric lemma: 

kemma 4.2. �89 ~ - l = ( n - 1 ) n n - 2  

(We prove this result at the end of this section.) We find 

; {fs 
F~(t) <_ (n - 1) n" 2 ds If~(s)l ds' If~(s')l 

ac oo 

= n " - z  ds' ]t~(s')l exp c(r) dz 
oc, 

because the ds integral can be performed explicitly! This completes the 
inductive step. 

Since F,( t )  is the size of the nth Ursell coefficient by virtue of 
Lemma 3.3, the induction proves that 

sup f d N-  lp I(exp[ - U(t, x, x l  ..... XN 1)])cl  ~ QN 1NN 2 

which is the bound claimed in the theorem. The convergence of the Mayer 
expansion for Q < e-~ is an immediate consequence of Sterling's theorem, 
and this ends the proof of Theorem 4.1. II 

The Y u k a w a  Gas  fo r  ~ < 4 r t  (The Cosine Euclidean Quantum 
Field Theory). We take the state space (A, dp) to be/2 x { - 1, 1 }, where/2 
is an open subset of a 2. A point ~ - ( x ,  e)e A describes a charge with 
position x e g2 and charge e=  +1. The measure dp is given by 

dp = z Y~ = +1 ~ dx. The interaction is 

u(r r =/~alE2(1 - J )  -1 (xl, x2) 
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where 

,f 
( l - A )  -1 (x, Y)=( -~ )2  d 2 k - -  (k e + 1) 

e i k  �9 ( x  - y )  

Using 

1 _ f ~ d 1 
k2q_l dt d t k 2 + e - t  

to provide the representation u = ~ dt flU), we have stability in the sense of 
(3.2) even though this model is not classically stable. It is now routine to 
compute Q using the relations 

]fi(s)] = 2/?e-S; c(s) = fi(~, ~) = fl/4~ 

to show that the Mayer expansion converges provided 

f l < 4 n  and 2 ]z[ f l (1- /~/4n)  l < e - 1  

Apart from the explicit condition on z, this result was first obtained in 
Ref. 6. A direct proof that the Mayer expansion converges for this system 
was first obtained in Ref. 11. 

By the sine-Gordon transformation, the partition function for this 
system is 

f ) [z ;o :cos § 1 
where the covariance of dp r  is 

f 
o d  1 

dt 
r dt k 2 + e -  

and the normal ordering is with respect to this covariance. Thus, the con- 
vergence of the Mayer expansion uniformly as T ~ - oe and as f~ increases 
to R 2 together with the fact that each term in the expansion is Euclidean- 
invariant in these limits provides an easy proof of the 
Osterwalder-Schrader axioms (except for physical positivity) for this field 
theory. Physical positivity can also be obtained this way, but it is necessary 
to use a different type of short-distance cutoff, such as the lattice 
approximation, which has the positivity property, and prove that in the no- 
cutoff limit the two expectations are the same. Since each term in the 
Mayer expansion is a sum over a finite number of Mayer graphs, for each 
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of which we have an explicit expression, we can show that graph by graph 
and therefore term by term in the Mayer expansion the limits are identical 
and then the same is true for log Z by our uniform convergence estimates 
on the Mayer expansion. 

The Y u k a w a  Gas for [3<16n/3. In a sense, the argument we 
have just given is based on the possibility of calculating the coefficient of 
the monopole O(z) term in the expansion exactly (it equals one). Now we 
are about to follow the same outline, but the dipoles will be singled out for 
special consideration as well. This type of idea is basic to the program of 
Benfatto et al. and was also proposed in Ref. 12. It is possibly useful in any 
system where forces can cancel because there are both attractive and 
repulsive forces, but we will immediately specialize to the Yukawa system 
in two dimensions. Define e by 

c(s) = fl/4n - ~(1 - e) 

where e > 0  since fl<167r/3. We make the inductive assumption: for 
l < ~ k < n , k r  

Fk(s)<~C k ikk 2esCk-1) 

where C - C ( f l )  is a constant depending only on fl, which is determined 
below. This bound holds when k = 1 because F1 = 1. When the induction is 
complete and the constant C(fl) is substituted in, we will have proved the 
following theorem: 

T h e o r e m  4.3. For 4~ < fl < 16~/3 and Iz] eC(fl) < 1, where 

C(fl)-= max (16~247~fl- 3fl' 3 -2flfl/27r ( f d x l O x b l ) ( f d x { x l l b [ ) )  

b(x) - (1 - 3 ) -2  (x) - (2~r)-2 ~ d2k (k 2 + l) ~ 2 e i k  , x 

d 

the Mayer expansion for the two-dimensional Yukawa gas with n -  2 term 
omitted, 

1 
~ . f d  ~ - ' p ( e  u')c(~l (.) 

n ~ 2  

is absolutely convergent uniformly in the volume s The dp includes z and 
s and is defined above. 

Inductive Stop. We consider the right-hand side of the integrated 
flow equation and divide the estimates into three cases: 
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1. I Jq ~ 2  and I I \JI  v~2. 

2. (]JI = 2 and the charges in J have the same sign) and/or ( l I \ J  I = 2 
and the charges in I \ J  have the same sign). 

3. ([JI = 2 and the charges in J have opposite sign) and/or ([I\JI = 2 
and the charges in I \ J  have opposite sign). 

Cases 2 and 3 overlap; we assign the overlap to case 2. We write 

F,=_ F}') + FI2) + F~ 3) 

corresponding to the decomposition into these three cases. 

Case 1. We substitute into the integrated flow equation the induc- 
tive assumption and apply the stability estimate just as was done above, to 
obtain 

Fl,1)( t )<~j  d s ~  k k ' ( n _ k )  , ,-k ~ 

x2fle"C" 2e'ln 2)e2"I1 e)i,-s)/3 

X a s  ~'  - ( t - s )(  2 ~ : n  + n - 3 I / 3  

Since n >~ 3, this is less than 

; f l C , , - 2 ~  k k - l ( n _ k ) . - k - I  el,,-ll,  d s e - U  s)2~.,/3 
O7. 

= 1-cn-lE(nk)  l(n--k)"-k-le(n l)t 

provided C >/3fl/2e. The k was the cardinality of J and consequently omits 
the values 2 and n -  2 in this case. 

Case 2. Let J =  (k, l), so that the coordinates of the two particles in 
J a r e  xk, ee, x~, et and in this case e~ = el= e. Since IJI = 2, we can wr i te f ( J )  
explicitly (by setting tli = 2 in the integral flow equation): 

; [g ] f ( J ,  s) = ds' Okl(S' ) SkC, lexp - -  ~kz(r) skst dr 
--o0 

where 

~kz(S) -- (~(S, Xk -- Xt) 
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with 
$(s, x) -= e - ' ( e  - s -  J ) - 2  (x) -= 15(e-Sx) 

From this we see that 

<~ 1 Ms sup j dx~ if(J, s)l ~< fie ~ --~ ~Cr 
X k , ~  

provided C>~ 2ft. In this case there is no exponential growth in s from a 
stability bound because both charges are the same. We find by substituting 
the stability bound and the inductive assumption and this bound into the 
right-hand side of the integrated flow equation that 

F}2,(t)~<~ n ~ l(n_k)n - le ( .  
k = 2 , n - - 2  

Case 3. This is the nontrivial case. Let J =  (k, l) and the coordinates 
of the two particles are x~, ek and xz, et with E~ = - e / =  e. The stability 
bound together with the explicit formula for f(J, s) given in case 2 imply 

/~j tio.(sl f(J, s) 

e~ f~ <~ -kE/(;ij(s) ds' I~kl(S')l e 4(1-~:)(s-s')/3 
/ oo 

We take advantage of J being a dipole by noting that 

< fii'dx l (a~) (x -  x .  s)t 

Therefore 

f dxk dxt j~j ~(s) f(J,  s) 

<<. ds' e 4(I - e ) ( s - s ' ) / 3  dx k dx/ dx 
oO k 

x I(ajJ)(x-x, ,  s)t l~k~(s')t 

On the right-hand side one can see the following mechanism at work: 
either the dipole is "stretched" so that the t~k/factor is small, or x k - x ~  is 
small, in which case the range of the dx integral is small and contributes a 
small factor. We can evaluate the integrals by 
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f dXk dxz f"  dx I(Ox~)(x - x,, s)[ I~kz(s')l 
Xk 

f for -- Xk = dxkdxl  dxl(ax~)(x~+x-x.s)l  It~kt(S')l 

By change of variables and translation invariance we can integrate over 
Xk--Xi, keeping x and x t - X k  fixed, followed by integration over x and 
then x t -  Xk : 

=f dXk, I(ax~)(Xk,, S)I f dx,~ IXz--Xkl I~kz(S')l 

=e '/2+ 3s'/~ f dx 1(Ox~)(x, O)t f dx Ixl IO(x, 0)1 

where we have used scaling. Therefore we have 

f dxkdx,  ~ ~o(s)f(J,s)l  

f dx Ii< )tx)l f dx Ixl I ix)l 

provided 

f 
.v 

X d s  ~ C a/2 + 3s ' / 2e4 (  1 -- s)(s - - r  

1 
<~ -~ C(2fle') e" 

6 f d x  C>~(l+8~)Idxl(~x~)(x)l Ixl IO(x)L 

Note that the integral over s' would converge ~s  > -1/8, which corresponds 
to fl<6~. We substitute this bound into the right-hand side of the 
integrated flow equation and combine it with the inductive assumption and 
the stability estimate to get 

, c , - 1  (:) F~31(t)<~ n ~ k * - ' ( n - k ) "  k - '  e( ' - ' ) '  
k = 2 , n - - 2  

We have completed the bounds in each case and by uniting them 
obtain 

n k = l  
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which by Lemma 4.1 is less than 

C n - l t , l n  - 2 e ( n  - 1)t  

which completes the inductive step, and ends the proof of Theorem 4.3. | 

Remarks  on B <  617. As noted above, our 16~/3 argument handles 
the ]J] = 2 terms. However, if 16rc/3 ~</~ < 6~z, then the bounds we used in 
case 1 are divergent for ] J ]  = 3 terms. These terms are "tripoles" and cannot 
be neutral, and in the left-hand side of the stability bound 

fi~j(s) ~> -3/~/8~ 
i < ) 

i, j c J  

it should be possible to prove that the coefficient can be changed from a 3 
to a 2, so that these terms are after all not divergent. 

B e y o n d  6rt. For fl > 67r the IJI = 2 terms are again divergent and the 
most obvious way to deal with them requires developing graphs with 
higher connectivity than trees in order to exhibit further cancellations. Now 
we run into difficulties with having too many graphs to estimate. This is the 
typical way in which the "large-field problem" of Gawedski and Kupiainen 
makes itself manifest and probably indicates that these methods are insuf- 
ficient as they stand. 

The Yukawa Gas in Three Dimensions. Imbrie (is) applied the 
iterated Mayer expansion of G6pfert and Mack to the Yukawa gas in three 
dimensions in order to prove screening for Coulomb systems in an exten- 
ded region of the parameter space. This type of result on the Yukawa gas 
also follows from Theorem 4.1 with a deformation of the potential (like the 
one used in our discussion of the Villain Yukawa gas) as follows: 

~ ( s , ~ i , ~ / ) = j ~ ( s ) z ( x i - - X / )  for l ~ > s > 0  

= flei~jb(s, xi,  xj) for 0>~s>~ - o e  

where 1~ is the characteristic function of the set Ixl ~< 1, f ( s )  is any 
monotone function with f (1 )  = ~ and f (0 )  = 0, and 

d 1 
~(s, x l ,  x2) - ds - 3  + L -  2e -s  (x l ,  x2) 

Note that ~ ~ dr fi is a Yukawa interaction of range L with a hard core of 
range/.  We obtain stability estimates for this type of interaction by replac- 
ing the point charges by equivalent charge distributions on the surface of 
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the hard cores using the electrostatic type of property that holds for the 
Yukawa interaction. The interaction energy is then bounded below by the 
sum of the self-energies of the spheres because the Yukawa interaction is 
positive definite. We assume L >I-/3 >t 1, bound Q by a modest calculation, 
and find convergence of the Mayer expansion in a region of the form 

C 1 zl  3 + c2z/3 3 exp(c3/3/l  ) + c4z/3L 2 < 1 

The standard methods can only obtain convergence in a region of the form 

ClZl 3 + c 2 z f l L  2 exp(c3/3/ l)  < 1 

which is much worse if l ,~/3 ,~ L. 

P r o o f  o f  L e m m a  4.2 .  Let J c  {1,..., n}; then 

/ , t - -  1 
1 1 =-Z 2 ~ IJlV=-2 IS~l"++-2 

j e J  
ir  

We rewrite the left-hand side using Cayley's theorem, which says that the 
number of tree graphs T1 on a set of vertices J is IJ] v l -2"  

=1 E 2 2 2  E 1 
j e a  T l o n J  T 2 o n J  c 

= (n - 1) (#  of tree graphs on { 1,..., n}) 

because there is a two-to-one map from J, i, j, T1, T 2 onto T, b, where T is 
a tree on { 1,..., n } and b is any bond in T. The map is given by b = 0" and 
T -= Tl~o T 2 and its inverse is to remove the bond b from T, thereby 
splitting it into two subtrees on J and J", respectively. The factor of two 
arises because of the ambiguity in how to name the two subsets of vertices 
J and jc. II 
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